

SANDIA REPORT
SAND2002-0675
Unlimited Release
Printed April 2002

Umbra’s High Level Architecture (HLA)
Interface

Eric Gottlieb, Michael McDonald, Fred Oppel

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia
Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors, subcontractors,
or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

SAND2002-0675
Unlimited Release
Printed April 2002

Umbra’s High Level Architecture (HLA) Interface

Eric Gottlieb, Michael McDonald and Fred Oppel
Intelligent Systems and Robotics Center

Sandia National Laboratories
Albuquerque, NM 871 85-1004

Abstract

This report describes Umbra’s High Level Architecture HLA library. This library
serves as an interface to the Defense Simulation and Modeling Ofice’s (DMSO)
Run Time Infrastructure Next Generation Version 1.3 (RTI NG1.3) software
library and enables Umbra-based models to be federated into HLA environments.
The Umbra library was built to enable the modeling of robots for military and
security system concept evaluation. A first application provides component
technologies that ideally fit the US Army JPSD’s Joint Virtual Battlespace (JVB)
simulation framework for Objective Force concept analysis. In addition to
describing the Umbra HLA library, the report describes general issues of .
integrating Umbra with RTI code and outlines ways of building models to support
particular HLA simulation frameworks like the JVB.

INTENTIONALLY LEFT BLANK

Contents

Umbra’s High Level Architecture (HLA) Interface 3
Introduction ... 6

HLA Overview .. 6
Umbra Overview ... 6
Modeling Robotic Behavior in Umbra ... 8

The Umbra HLA Library .. 10
Umbra HLA Class Hierarchies ... 12
Federation Creation & Destruction ... 14
Time Management .. 14

Non-regulating, Unconstrained Umbra Federates .. 15
Regulating and Constrained Umbra Federates ... 16
Nonregulating. Constrained Umbra Federates .. 18

Object Management .. 20
Relationship Between Umbra and HLA Objects .. 20
Ambassador Factory Services ... 21
Proxy Modules that Support HLA Interaction Classes ... 22
Publication-based HLA Object Class Proxy Modules .. 23
Subscription-based HLA Object Class Proxy Modules .. 24
HLA Data Exchanges ... 26

Interaction Management ... 28
Suggested Reading .. 32

Figures

Figure 1: Umbra Robotic Vehicle Meta.module ... 9
Figure 2: Simplified Diagram Showing Umbra to HLA Integration 10
Figure 3: Class Hierarchy that Defines Ambassador 12
Figure 4: Typical Class Hierarchy for Application-Specific HlaObjects 13
Figure 5: Key for Time Management Drawings .. 15
Figure 6: Time Management for Unconstrained and Non-regulating Umbra Federates .. 16
Figure 7: Time Management for Constrained and Regulating Umbra Federates 17
Figure 8: Time Management for Constrained and Non-regulating Umbra Federates 18
Figure 9: Ambassador Factory Services ... 21
Figure 10: Creating Basic HLA Proxy Modules .. 22
Figure 1 1 : Creating HLA Publisher and Publisher/Subscriber Proxy Modules 24
Figure 12: Creating HLA Subscriber Proxy Modules .. 26
Figure 13: How the Ambassador Coordinates HLA Data Publication 28
Figure 14: How the Ambassador Coordinates the Receipt of HLA Subscription Data ... 29
Figure 15: Publishing Interactions ... 30
Figure 16: Subscribing to Interactions ... 31
Figure 17: Receiving Interactions 32

Introduction
Umbra, Sandia’s new modeling and simulation framework, links together
heterogeneous collections of modeling tools to allow tradeoff analyses of complex
robotic systems concepts. The Umbra framework allows users to quickly build
models and simulations for intelligent system development, analysis,
experimentation, and control. The models in Umbra include 3D geometry and
physics models of robots, devices and their environments. Model components can
be built with varying levels of fidelity and readily switched to allow models built
with low fidelity for conceptual analysis to be gradually converted to high fidelity
models for later phase detailed analysis.

This report describes Umbra’s High Level Architecture (HLA) library. This
library serves as an interface to DMSO’s RTI NG1.3 software library and enables
Umbra-based models to be federated into HLA environments. The library was
built to enable the modeling of robots for military and security system concept
evaluation. A first application provides component technologies that ideally fit the
US Army JPSD’s Joint Virtual Battlespace (JVB) simulation framework for
Objective Force concept analysis. In addition to describing the Umbra HLA
library, the report describes general issues of integrating Umbra with RTI code
and outlines ways of building models to support particular HLA simulation
frameworks like the JVB.

HLA Overview
As described in [Kuhl-99~

The HLA is a software architecture for creating computer models or
simulations out of component models or simulations. The HLA has been
adopted by the United States Department of Defense (DoD) for use by all
its modeling and simulation activities. The HLA is also increasingly
finding civilian application.

The HLA is defined by three components: (1) Federation Rules, (2) the HLA
Interface Specification, and (3) the Object Model Template (OMT). The DMSO
has developed and supports a software library called the Run Time Infrastructure,
or RTI, which implements the HLA interface specification and facilitates building
HLA compliant codes. The RTI interface supports all inter-process
communications in an HLA federation. Codes, like Umbra, interact with the RTI,
and the RTI, in turn, exchanges data between federates.

Umbra Overview

Umbra simulations typically model devices and the environments within which
they operate. These devices are modeled in Umbra as embodied agents, and fine
and coarse-grained physical effects models are combined to represent interactions
among devices and the physical world. Three-dimensional graphics displays are

6

used for visualization. Umbra can also be used to model disembodied agent
systems to support basic research in distributed intelligence.

A key attribute of Umbra is its ability to correctly model the topological structure
of integrated systems. For example, robots are typically modeled with behavior,
effectors and sensors each represented within separate computational modules.
(Here, effector models typically include vehicle motion as well as radio
transmissions and other effects modules. Sensor modules typically include
geometric sensors such as touch and proximity sensors as well as radio receivers
and chemical sensor models.) These effector, sensor, and behavior modules are
then configured into meta-modules that are connected in the same way that real
sensors and effectors are connected to robot controllers.

Umbra fills a unique niche in modeling and simulation by addressing the “middle
layer” of simulation fidelity. While typical Umbra simulations run at a mid-level
of fidelity, Umbra simulations can and do range in fidelity from high level
mission analysis tools (at a level similar to DoD constructive M&S tools like
OneSAF and JCATS) to high fidelity engineering analysis tools (similar to
MATLAB and ADAMS). In addition, a single Umbra simulation can incorporate
models throughout this wide range of fidelities. In federations, Umbra can model
intelligent systems and bridge low-level engineering with high-level constructive
environments.

Generally, Umbra incorporates the following capabilities:
Complex, non-linear world modeling - Umbra models geometry,
physics, control laws, sensors, communication, functional subsystems
and environments in a modular fashion. This enables the use of models
with asymmetric levels of fidelity.
System-level modeling - modules are configured to mimic system
structures.
Embodied agent modeling - Entities modeled with behavior,
geometry, sensing, and physics. Robots are typically modeled as
embodied agents.
Disembodied agent modeling - Entities predominantly modeled with
behavioral, as opposed to physical aspects. Typically used to analyze
large collective systems of computational agents.
Encapsulation - Enables modularity and legacy code integration.
Continuous time and event driven simulation - Allows combining
realistic simulation of real-world physics and control laws with high-
level commanded event responses.
Computational steering - Allows users to interactively modify
simulations to highlight effects that develop during analysis. Adding
unexpected obstacles to terrain models to examine dynamic control
response is an example.
Rapid integration of terrain and feature data - Allows analysis of
systems in outdoor terrains and urban environments. Feature data

- -

includes obstacle geometries, roads, and mobile vehicles as well as
chemical plumes and other sensed physical features.
Implementation uses C++ for compute-intensive tasks and TcVTk’ for
application scripting and for its graphical user interface.

Modeling Robotic Behavior in Umbra
Robotic behavior is typically a result of complex interactions between the robot
and its environment that result from the robot performing defined tasks. Umbra
models are composed to match the target simulation environment framework and
implementation. Within Umbra, robotic modules are built or composed as a
collection of modules that separately model the robot’s behavior and controls
algorithms, the sensors that the robot’s behaviors use, and the physics or motion
of the vehicle as it interacts with its environment. The collection is often referred
to as a meta-module. Additional communications modules are used to provide
command interfaces and status outputs as well as to model how collections of
robots communicate with one another.

For devices where behavior is independent of the physical environment, the
physics and sensor modules are implemented as services that are detached from
platforms or sensors. For example, intelligent information processing systems that
do not move would not have sensors and physics.

Figure 1 shows how these meta-modules are organized within Umbra. It is noted
that robots typically use several sensors to control their behavior. A shadowed
box titled Robotic Sensors is used to represent this plurality. In addition, robot
platforms often cany sensors, such as viewing-only cameras, that they do not use
for automatic control. These sensor model modules can be connected to the
physics modules without making an attachment back to the behavior and controls
modules.

I Tcmk is available at http://www.scriptics.com/

http://www.scriptics.com

Rdlotic Sensors Behavior d Contmls Vehicle Physics

__ Inputs outputs ~ inputs outputs
~

outputs

- I pwitian -

Cornrnunlcatlons In
Communications Out ;

Inputs
Inputs I

9

The Umbra HLA Library
Figure 2 shows a conceptual diagram of how Umbra robot vehicle meta-modules
are integrated via HLA for the JVB. Here, Umbra publishes behavior and
platform data through separate HLA objects. In addition, for tightly coupled robot
systems, Umbra sensors and physics models will subscribe to HLA sensor,
environment, and mobility services.

Published by Umbra
Services with Data

Behavior Sewices

Subscribes to

Figure 2: Simplified Diagram Showing Umbra to HLA Integration

Using the HLA Library, models are composed to conform to the federation's
interface as defined through its Federation Object Model (FOM). For the JVB,
robotic system models are implemented in accordance with the JVB-FOM with
separate behavior and platform services. Where it's important, for efficiency
reasons, behavior is tightly coupled to sensor input or platform motions within
Umbra. At the same time, HLA Objects separately representing Platform and
Behavior services are presented to the HLA as separate services. This internal
coupling is transparent to the FOM to allow maximum flexibility.

10

Published services are modeled both internally to Umbra and, for loosely coupled
systems, modeled externally through subscribed services. For example, robotic
tanks might model mobility and battle damage within Umbra or externally by
having Umbra subscribe to services that are outside Umbra.

It is noteworthy that the HLA interface allows the computational portions of the
modules to be distributed among separate federates at a component level. For
example, behavior services might generate commands, status and high-level
reports. Other elements of the HLA simulation environment might transfer task
and report data to and from the behavior services while propagating this C4ISR
data through the environment. Platforms, sensors, and other objects might be
attached, either temporarily or permanently, to one another to represent systems
with combined functionality.

Through the HLA interface, other systems are able to instantiate, command, and
monitor individual as well as integrated collections of platforms. In addition,
Umbra can monitor HLA objects that it does not control. This monitoring is
important for allowing Umbra to interact with the entire HLA simulation
environment.

Umbra HLA Class Hierarchies
The Umbra HLA implementation utilizes Umbra's Worlds abstraction to achieve
a close matching of Umbra modules to HLA components. An Umbra module
class, called the Ambassador, has been developed for communications
management. An Ambassador module is created for each federation that an
Umbra application joins. Umbra proxy modules are instantiated to support
specific interactions and as one-to-one proxies to specific HLA Object Class
instances. While any proxy module can be programmed to send or receive any
HLA interaction allowed by the federate, interaction-only proxy modules are
typically created to proxy sets of HLA Interaction Classes. Object Class proxy
modules are created to proxy individual HLA Object Class Instances.

In addition to being an interface, the Ambassador module is also a factory of all
object and interaction proxy modules. The Worlds abstraction is used to provide
an added level of control between the Ambassador factory module and the
interaction and object proxy modules.

At the implementation level, DMSO's RTI provides an abstract class, called
FederateAmbassador, that identifies the callback functions that each federate is
obliged to provide. Umbra provides another class, called UmbDynamic, that
provides module services including dynamic updating. Umbra HLA library
provides an Ambassador class that uses multiple inheritance to combine the
functions of FederateAmbassador and UmbDynamic into one class, This
inheritance scheme is shown in Figure 3.

UmbDynamic FederateAmbassador

(multiple-inheritance)
I

I

I Ambassador

2) joinileave
1) creatddestroy

3) tlme management
4) object subscription
5) object publication
6) interaction subscription
7) interaction publication
8) HLA module scheduling
9) HLA module factory

factory modules for HLA
Ambassadors are

modules and HLA class
modules

a
Ambassadors have lists of all
HlaMcdules and a map from

the RTi's HLA Object
Handles to Umbra's ~

HLAClassModuleS i i

Figure 3: Class Hierarchy that Defines Ambassador

12

The Umbra Ambassador implements the callback functions required by the RTI
software. Specifically, Ambassador implements create/destroy, joidleave and
object and interaction subscription and publication. In addition Ambassador
provides HLA module factory and scheduling services.

Umbra's HLA library provides a HlaModule virtual class that can send and
receive interactions and a HlaClassModule virtual class that, in addition, can
provide proxy object references that correspond to specific HLA objects defined
in the RTI. HlaModule is derived from UmbDynamic and HlaClassModule is
derived from HlaModule. Within an HLA application, derivative classes are built
to implement specific functionality required by the federation. Figure 4 shows the
class hierarchy of these modules in relation to user modules developed for
particular applications.

UmbDynamic

> handle HLA interactions

Useful for building Umbra
modules that Send

interactions but don't have
corresponding class

instances. For example, c2

from the Umbra
Ambassador

HlaModuie (vlrtual)

User HLA modules
that publish and/or

subscribe to
interactions

HlaCiassModule
(virtual) I(

Has all the methods to
handle HLA class

attribute updates sent
through the Umbra

Ambassador

7
published object in the
Every subscribed and

HLA wortd will have a
corresponding object
in the Umbra wortd.

User HLA modules
that ghost instances

of HLA classes
(publish or
subscribe

Figure 4: Typical Class Hierarchy for Application-Specific HlaObjects

HlaModule and HlaClassModule implement basic functionality for functions that
are required for interacting with an Umbra Ambassador. Derived HLA modules
can override this functionality to provide specialized behavior.

Federation Creation & Destruction
Umbra Ambassador modules implement Federation Creation and Destruction and
Federate Joining and Leaving as matched pairs of behavior. The Create
Federation command can be invoked through a Tcl command that is sent to the
Ambassador. Once this command has been called, the Ambassador will assure
that a Destroy Federation command will be issued before the Ambassador module
is destroyed. Likewise, if the Join Federation command is invoked through its Tcl
command, the Leave Federation command will be issued prior to Ambassador
destruction. Destroy and Leave can also be invoked through Tcl commands.

Time Management
The HLA provides time management services to coordinate events between
simulation environments. HLA time management services have specific design
features to allow federate simulators to operate within a well-controlled time
disparity band. For example, simulation time among JVB federates is typically
held to within a few seconds of each other.

To keep network traffic at a manageable level, typical HLA federates pace time in
relatively large steps (in the order of seconds). Conversely, to provide sufficiently
high fidelity physics and interactive capabilities, typical Umbra simulations are
run with relatively small time steps (in the order of micro seconds). Our Umbra-
HLA integration provides a time management and coordination scheme that
allows the HLA federates to make large time steps (e.g., greater than 1 second)
while the Umbra environment uses small internal time steps (e.g., less than 100
milliseconds). In the limiting case, the design allows Umbra to operate with
arbitrarily large time steps designed to keep pace with any federation.

Our solution implements a time base that interpolates federation time to derive a
local (interpolated) Umbra time that can be used for physics effects computation
and other time-rate sensitive modules. (This time value is available to all Umbra
modules within a simulation.) For purposes of discussion, time will be described
as being broken into threads that artificially begin whenever Umbra synchronizes
its time with the federation’s time base.

The Ambassador provides a connector-based interface to its local interpolated
time that simulation modules can use for computation. This clock is provided for
coarse time synchronization. In a typical simulation, for example, physics
modules use the Ambassador’s dt or delta time connector to determine the
integration time over which to perform their computations. Behavior modules use
the time connector in their event scheduling mechanisms. Modules are free to
ignore this clock. For example, simulation control modules typically act on
interactions that they receive without regard to the interpolated time base. (They
do, however, rely on the RTI to deliver messages within the appropriate time
band.)

14

r\ Requested FedTime ii

Last Approved FedTime

LBTS

1 Interpolated Local Time

A Advance Time Request Granted

A Advance Time Request Made

@ Look-ahead time L% New Fed time reported by getTime

Figure 5: Key for Time Management Drawings

The following sections describe the various time management algorithms that
have been built in Umbra. Figure 5 provides a drawing key for the figures used in
this description. For clarity, we describe the non-regulating and unconstrained
time management case first, then the regulating and constrained case, and finally
the non-regulating and constrained cases.

Non-regulating, Unconstrained Umbra Federates
Most of the time, non-regulating, unconstrained federates will not pay attention to
the federation’s simulation time. For example, real-time simulators don’t typically
use HLA’s time management features. To support real-time applications, the
Ambassador reports real-time data on when it is connected to a wall or real-time
clock module. In some cases, it may be beneficial to coarsely match Umbra’s time
base with time being managed by other federates. To allow this potential, the
Ambassador provides a time base that roughly tracks the federation’s time.

The basic algorithm for non-regulating, unconstrained Umbra federates is to have
the Umbra simulation clock try to keep up with the federation’s Lower Bounded
Time Stamp (LBTS). The algorithms to track time are written with the
expectation that the LBTS will be irregular in both the rate or frequency that time
changes are reported as well as the time steps that are reported. Figure 6 diagrams
this basic algorithm by showing time advancing through separate time threads. It
is noteworthy that this algorithm can be overridden by connecting the
Ambassador module to an external clock. For example, wall clock modules can be
connected to the Ambassador module for real time simulations.

In the typical case, the Ambassador module will generate an interpolated clock
tick every 1 to 100 milliseconds and watch the federate for time updates. By
monitoring the LBTS through, Umbra will occasionally, (ix., every 1 to 10
seconds) notice that the LBTS has advanced. If the advance is within reasonable
bounds, Umbra will keep running its interpolated clock at its normal pace. If the
advance is very far out in the future, Umbra will increase its interpolated time
steps to catch up with the federation’s LBTS time. (The drawing shows this as
Time Warping.) If Umbra’s time catches up to the LBTS, Umbra will stop its
interpolated clock (set the delta time to zero) while continuing to pulse modules to
allow them to process time insensitive events.

15

Unconstrained
Non-reguiating

Federate

If the simulatbn catches up to the
led lime, it will quit moving 1s limo

fo-rd but the modules will still get
called with updates ab above. \

Normally, lhe Simulator /
will find out that the fed

belore it ''CatcheS" it.
time has moved up

when interpolate time is mare
Wan 2.dtFed behind LETS of LETS

Figure 6: Time Management for Unconstrained and Non-regulating Umbra
Federates

The specific algorithm works as follows:
On initialization, Umbra queries the federation to determine the
current LBTS. If the LBTS is infinite, Umbra will assume that no time
regulation is being performed and will start ticking its clock from zero
time. (Umbra always initializes its Ambassadors with non-regulating
and unconstrained time management.)

interpolate local time.
If LBTS time is equal to or smaller than Umbra time, Umbra will
stop moving its local time forward. (It will continue to provide
modules with update functions. Only time-based functions that use
the HLA clock will be affected by this stopping of time?)
If LBTS time is within two dtFed time steps of Umbra time,
Umbra will advance time by dt. (dtFed and dt are Umbra
Ambassador class variables.)
If LBTS time is greater than two dtFed time steps of Umbra time,
Umbra will advance time by (1- (Lbts - umbTime)/dtFed) * dt.

At every update, Umbra will check the LBTS to determine how to

Regulating and Constrained Umbra Federates
Regulating and constrained time management is the next simplest case. Here,
Umbra interpolates its local time within a time span that keys off its last federate
granted and the next federate requested times. (LBTS is ignored.) Two algorithms
have been implemented. The first is time following, where Umbra's local
interpolated time follows slightly behind its last time advance request. The second
is time leading, where Umbra's local interpolated time follows slightly ahead of
its last time request.

Figure 7 diagrams Umbra's time following algorithm for regulating and
constrained time management. To understand the algorithm, first assume Umbra
has been running and has recently passed a time advance grant. After a short time,
Umbra will notice that its Umbra time has overrun its lookahead time. At that
point, Umbra will make a time advance request (first triangle) and keeps stepping
its local time forward at its regular pace. (This puts Umbra's time slightly ahead

An algorithm to slow Umbra time as it approaches LBTS time may be implemented at a later
date.

16

of the last time request grant.) Some time later, the RTI will grant the time
advance request, placing Umbra onto a new time thread. (This also puts Umbra’s
time slightly behind the last time request grant.) At that point, Umbra will
continue to interpolate its local time and repeat the basic algorithm. A special case
arises, when Umbra’s local time catches up to its last requested plus lookahead
time. When this occurs, Umbra holds its simulation clock in the same way as it
does with non-regulating unconstrained time management.

called wllh updates (so that, for example, they can
still pmcess communications events).

Figure 7: Time Management for Constrained and Regulating Umbra Federates

The specific algorithm works as follows:
As always, the Ambassador checks the federation’s current LBTS on
initialization. If the LBTS is infinite, Umbra assumes that no time
regulation is being performed and will start ticking its clock from zero
time.

management, it makes a time advance request one dtFed larger than its
local interpolated time.

request or is approaching time to request another time advance.
When Umbra’s time is more than one lookahead increment past the
last time grant, Umbra will make a time advance request.
If Umbra’s time is not greater than the last time request or the
lookahead time: it will increment its local time by dt.

When the Ambassador first requests regulating and constrained time

At every update, Umbra monitors whether it has been granted its time

Umbra’s time leading algorithm for regulating and constrained time management
is similar to the time following algorithm. To understand the algorithm, again
assume Umbra has been running and has recently been granted a time advance.
Also assume that its local interpolated time is close to the time grant. From here,
Umbra will continue to interpolate its local time forward. When its local time
becomes greater than one of its federation time steps plus its lookahead past the
last time grant, Umbra will make a time advance request with the time it just

’ Currently, Umbra is programmed to stop advancing its time when it reaches the last time request
time.

17

passed and continue stepping its local time forward at its regular pace. (This puts
Umbra's time slightly ahead of the last time request.) Some time later, the RTI
will grant the time advance request, restarting the scheme and Umbra will
continue to interpolate its local time and repeat the basic algorithm. A special case
arises when Umbra's local time reaches two of its federation time steps greater
than the last granted time. (This is also one of its federation time steps beyond its
last time request.) When this occurs, Umbra stops its simulation clock in the same
way as it does with non-regulating unconstrained time management and waits for
a time advance grant.

Non-regulating, Constrained Umbra Federates
As with non-regulating unconstrained time management, Umbra's non-regulating
constrained time management algorithm has Umbra pacing itself to keep in step
with the federation's time, as measured by the current LBTS. Here, however,
Umbra makes time advance requests to assure that time stamped events (sent from
regulating federates) are presented to Umbra in a time base that matches its own
sense of time. Figure 8 diagrams this algorithm.

Time advance
requests made
before l m I
time must stop. "pull' federate

local time 1
I

Time Warping: The local interpolated dl
illcreases linearly when interpolate lime
is more than 2'dtFed behind LBTS

new time request to get held

Figure 8: Time Management for Constrained and Non-regulating Umbra
Federates

The specific algorithm works as follows:
As always, Umbra will have initialized its Ambassadors for non-
regulating and unconstrained time management and be roughly in
synch with the federation's LBTS time.
When Umbra first requests constrained time management, it makes a
time advance request one dtFed larger than its local interpolated time.
At every update, Umbra will query the LBTS to determine how to
interpolate local time.

18

If LBTS time is equal to or smaller than Umbra time, Umbra will
stop moving its local time forward. (It will continue to provide
modules with update functions. Only time-based functions that use
the HLA clock will be affected by this stopping ofrime.)
If LBTS time is within two dtFed time steps of Umbra time,
Umbra will advance time by dr. (drFed and dr are
UmbAmbassador class variables.)
If LBTS time is greater than two dtFed time steps of Umbra time,
Umbra will advance time by (1- (Lbts - umbTime)/dtFed) * dt.

granted its time request or is approaching time to request another time
advance. When Umbra’s time is more than one lookahead increment
past the last time grant, Umbra will make a time advance request.

In addition, at every update Umbra monitors whether it has been

Object Management

Relationship Between Umbra and HLA Objects
Umbra simulations publish and subscribe to RTI interaction parameter and object
attribute data through proxy modules. Each HLA Interaction Class or Object
Class that an Umbra simulation publishes or subscribes to is represented within
Umbra with an application-specific interface proxy module. These modules proxy
the HLA by maintaining local state data concerning the attributes and parameters
and by providing mechanisms for moving HLA state and interaction data between
other Umbra modules and the HLA environment. Interface proxy modules do not
typically provide modeling services. Rather, they communicate with other
modules within the Umbra environment that in turn provide modeling services.

For example, a robotic system might be modeled within Umbra using a variety of
connected modules (e.g., see Figure 1). Various aspects of this model may have
HLA counterpart objects. Key modules that make up the Umbra robot are
connected to Umbra HLA proxy modules to transfer state data between the
Umbra robot modules and the HLA world. It should be noted that this separation
is not a requirement, but rather it is done for convenience and rapid programming.

HlaModule is the base or virtual proxy class for handling interactions.
HlaClassModule, which is derived from HlaModule, adds the ability to proxy
instances of HLA Object Classes. Application-specific modules are built by
inheriting from these modules. All HlaModule modules can be programmed to
send or receive any interaction (providing, of course, that federate has subscribed
to the interaction or the RTI has granted the federate permission to publish). In
fact, more than one module can be programmed to receive the same interaction.
Here, the Ambassador module provides a copy of the interaction data to each
module so that it can perform its separate processing function.

The HlaClassModule is used to proxy instances of HLA Object Classes. Separate
application-specific HlaClassModules are instantiated to proxy individual object
instances created in the HLA federation. Proxy modules are created both for
objects that the federation publishes and for objects that the federation discovers
through subscription. For example, a typical Umbra application that publishes 50
Platform objects and discovers another 200 Platform objects in a JVB federation
will create 250 Platform proxy modules (derived from HlaClassModule) to proxy
these objects.

20

Ambassador Factory Services
Umbra provides an interface for allowing Umbra modules to create other Umbra
modules. This capability is called a Factory Method4 and is an underlying
mechanism for creating Umbra worlds. The Ambassador uses this facility to
create all HLA proxy modules.

Ambassador

m

1
ObJect Subscrlber

proxy modules

proxy modules mat
also publish some

attributes

~ ~

Object publisher
proxy modules -

proxy modules that
Object publisher

also subscribe to
some anributas

Figure 9: Ambassador Factory Services

Figure 9 shows five basic types of HLA proxy modules objects that Umbra's
Ambassador can create. These are:

Proxy modules that only support interactions.
Proxy modules that are created to publish instances of HLA Object

Proxy modules that are created to subscribe to attribute data from
Classes.

externally published instances of HLA Object Classes.

J

4 Gamma, Helm, Johnson, and Vlissides, Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995, pp 107-116.

Proxy modules that are created to subscribe to attribute data from
externally published instances of HLA Object Classes and then acquire
control of and publish attribute value data.

Classes, give up control of instance variables and subscribe to attribute
value data.

Proxy modules that are created to publish instances of HLA Object

In addition to creating objects, the Ambassador keeps track of and manages the
objects that it creates. For example, the Ambassador passes HLA data to its proxy
modules, allocates specific time intervals during which HlaObjects can publish
data, and destroys Subscription objects when the corresponding HLA Objects are
destroyed.

Proxy Modules that Support HLA Interaction Classes
Figure 10 shows the software interactions involved in creating basic HLA proxy
modules. As was noted earlier, basic modules can only support interactions. It is
typical to utilize basic proxy modules as unique interfaces to specific groups of
interactions. For example, in JVB, one proxy module was created to handle the
remote-create interaction while another was created to handle propagated
commands or orders from the Command, Control and Communications (C3) grid.

I I 1) Rwister each class Ambassador 1
I a m l h handle set

select interaction classes
2) Request to subscribe

select interaction classes
3) Request to publish

, . :,~.. ,,,

, t:: ,:, , , ~, ',,.. > ,
3,. '.'% , , , ,

~ , . ,,,
, . < . , , , I

, . ! I , :: .: , , I .:,
$,I ,,,:.,.:, ;;:,., I, .L>i,, ,.

I l:l.,)l , I ,,;, ;>:/:',,. .,.;.. .A,., 8) '

i ~ ii I I I;:::. t: ~: _ i , ,I!_! i.li
,, " ! , . . , , . : I) , +(,*,.

4) Create new
hlaObject module in Umbra

5) command module to subscribe object created and associated
to select interactions

Umbra HlaMOdule

Figure 10: Creating basic HL4 proxy modules

The process for publishing interactions proxy modules follows the following
steps:

1. The application registers each class-attribute handle set (cName and
attributeNames) through Umbra with the RTI and stores the class and

22

attribute handles within the Ambassador module. Assuming that the
Ambassador module is named amb, the registration command for
interactions is of the form:
amb getRtiInteractionHandles className attributeNames

2. The application may request to subscribe to specific Interaction Classes in
the HLA world. The request to subscribe command is of the form:

or, if the application wishes to restrict interactions to a specific space,
amb subscribeInteractionClass SinteractionName

amb subscribeInteractionClassWithRegion SinteractionName \
$routespace

3 . The application may also request permission to publish specific
Interaction Classes in the HLA world. The request for permission to
publish is as follows:
amb publishInteractionClass SinteractionName

4. The application has the Ambassador create an application-specific Umbra
proxy module. In the JVB, a typical module was called Order and the
proxy module creation command was of the form:
amb hlaProxyModule oName

5 . The proxy module is then typically commanded to individually subscribe
to specific interactions. (The module, in turn, commands the Ambassador
to associate the receipt of these interactions to that module.) It is also
typical to provide the name of a Tcl script that will be called when the
interaction is received. In the JVB, associations for the Order module were
done with the commands:
$name subscribeInteraction \

$name subscribeInteraction \

$name subscribeInteraction \

Networking.Communication.Command.Move

Networking.Communication.Command.FollowVehic1e

Simu1ationService.FireEngagement.DamageReport

Publication-based HLA Object Class Proxy Modules
Figure 11 shows the software interactions involved in creating HLA class proxy
modules for HLA Object instances that Umbra publishes, including those that
give up control of instance variables to other simulators and subscribe to their
values. Generally, an Umbra application requests permission to publish an HLA
class and then creates or publishes a number of class instances by creating Umbra
HlaClassModules as proxies to their corresponding HLA class instances.

The request to publish is typically done at the beginning of the program and
object instantiation is done as needed (e.g., as platforms are created). As a factory,
the Ambassador is responsible for creating the proxy modules. Ambassadors
directly instantiate objects upon receipt of an object creation command (generally
invoked through Tcl). Once the proxy module is created, the Ambassador returns
a pointer to the new proxy module so that it can be further referred to from within
the Tcl environment. Typically, these HlaClassModules are connected to other
Umbra modules to form a complete device model.

I
1) Define or

Ambassador

\

object created and associated
\

Umbra
HlaClassModule

Figure 11: Creating HLA publisher and publisher/subscriber proxy modules

The process for publishing Object proxy modules follows the following steps:
1. The application registers each class-attribute handle set (cName and

attributeNames) through Umbra with the RTI and stores the class and
attribute handles within the Ambassador module. Assuming that the
Ambassador module is named amb, the registration command for
interactions is of the form:

2. The application requests to publish an object class to the HLA world. The
amb getRtiObjectHandles className attributeNames

request to publish command is of the form:
amb publishobjectclass cName

3. The application has the Ambassador create an Umbra proxy module.
During creation, Umbra also publishes the object instance to the HLA
federation and establishes the needed mappings to support all proxy
functions. For HLA Object Classes, the HLA object name and Umbra
modules can be named differently. The instance creation command is of
the form:
a& ProxyModuleType cName modType oName

Subscription-based HLA Object Class Proxy Modules
Figure 12 shows the software interactions involved in creating proxy modules for
instances of HLA Object Classes that Umbra subscribes to. Generally, Umbra
registers (sets up the interaction handles) then subscribes to an HLA class. Later,
the RTI calls Umbra with an application-provided callback function which, in
turn, calls a Tcl procedure which creates a connected set of meta-modules for
monitoring particular HLA class instances and other representing the data in the
simulation.

24

Registration, subscription and instantiation are done at different times (i.e., with
different calls to Umbra's Ambassador). To provide the highest-possible degree
of flexibility, Umbra's subscription-based proxy modules are not instantiated or
destroyed until after the corresponding HLA Object Class instances come into
existence (Le., are published or destroyed by another federate). Rather, the
Ambassador subscribes to an HLA Object Class and then, when another federate
publishes an HLA Object Class instance, the RTI informs the Ambassador that
the HLA Object of the subscribed Class has been created or destroyed in the HLA
world. Once the Ambassador is informed that an HLA Object Class instance has
come into existence, it performs the necessary calls to create the corresponding
proxy module as well as any internal models that interact with or represent the
instance.

Umbra HlaObjects are typically connected to other Umbra modules. The code to
connect modules is typically defined within Tcl scripts and must be executed after
the subscription instances are created. To provide this capability, Ambassador is
given a callback script that, when executed, uses similar logic as Publication
Objects to ask the Ambassador to create the subscription object. This script then
uses the handle returned by the Ambassador from the discovery process to build
and connect the other modules that the subscribed object interacts with.

The interaction generally follows the following steps:
1.

2.

3.

4.

5

The application iegisters each class-attribute handle set (cName and
attributeNames) through Umbra with the RTI and stores the class and
attribute handles within the Ambassador module. Assuming that the
Ambassador module is named amb, the registration command is of the
form:

The application requests to subscribe to the class and at the same time
provides a callback script (cbScript) and subscribes to the class,
providing a callback script (cbScript) and list of argument values that
should be returned in the callback (args). Umbra then subscribes to the
class through the RTI. The subscription command is of the form:

Once the RTI informs Umbra that an HLA Object of the subscribed Class
has been published by another federate, Umbra schedules the Tcl
interpreter to execute the callback script (cbScript) while providing the
name of the subscribed object as published in the HLA world (oName) and
the unmodified list of arguments. The callback command is called within
Umbra as follows:

After Umbra completes its scheduling operations, the Tcl interpreter calls
the callback script.
Typically, the callback script has the Ambassador create an Maobject
designed to utilize the subscribed data and other modules that model the
subscribed object. Callback scripts are typically of the form:

- -

amb getRtiInteractionHandles className attributeNames

amb Subscribe cName cbScript args

after delayTime "cbScript oName args"

proc cbscript (oName {args " ")) {

amb modType SoName ... # create other modules oMod
SoName -connect dataout SoMod dataIn ...

I

1) define or get class and parameter handles
/,i-

2) subscribe to class using TcI After

3) invoke cbscript (onarne, args)

, ~ rnoduleoname-1-\-~, . , ,I ',,, i l (. , ,., :,.; .,I ~

~ ,: ' ~ : > I (. :,$:,:,:~

create script execut
after Umbra releases

control to Tcl
5) object created and associated

HlaClassModule
Umbra

(A proxy)

Figure 12: Creating HLA subscriber proxy modules

HLA Data Exchanges
The Ambassador coordinates all data exchanges between Umbra and its
associated HLA Federation. It uses the following update logic to perform this data
exchange:

1. At a user-adjustable frequency, the Ambassador walks HLA proxy module
list and sends each an Ambassador Update message.

The Ambassador update message frequency is equal or lower to

Within the call, each Umbra HLA object can make any number of
Umbra's main Update frequency.

publish-type calls to the RTI.
L. After the last proxy module has been updated, the Ambassador does an

RTI tick. The tick allows the RTI to make its callbacks. Thus, during this
and any other tick, the RTI may make several callbacks to Ambassador.
The most typical is a call to process an interaction or update attributes.

Within these RTI-invoked callback functions, the Ambassador figures
out which Umbra proxy modules get the message and then invokes a
standard callback message to that specific Umbra HLA proxy module.
Typically, the proxy module then caches the data and quickly returns.
(Because the RTI is not reentrant modules cannot call the RTI during
the RTI callback. A safe programming strategy and encouraged

26

practice in Umbra is to minimize the processing within the callback.
This is practice is also encouraged in the RTI programming guides.)
o Some modules cache the data in their instance variables. Later,

when the Ambassador sends an Ambassador Update message,
these modules finish processing their data.

o Other modules form a Tcl callback function and post the function,
possibly with some delay, in the Tcl event loop. Later, the Tcl
event loop processes the function (in a way that is guaranteed to be
outside the RTI callback).

Figure 13 shows the basic flow of information during a typical Ambassador
Update cycle. On its Umbra Update, the Ambassador can send each of its
HlaObjects an Ambassador Update. The HlaObjects then, in turn, post messages
to the RTI. Finally, after the Ambassador finishes updating its HlaObjects, it
issues a tick to the RTI, upon which the RTI starts issuing callbacks. (See
discussion on Figure 14 below.)

1) Umbra Update

I
2) Ambassidor Update ,

3) set attribute data

.Y Umbra HLA Obj

Figure 13: How the Ambassador Coordinates HLA Data Publication

Figure 14 shows how the Ambassador processes callbacks from the RTI.
Callbacks are processed while the RTI executes its tick function. As just
described, the Ambassador issues a tick after updating its last HlaObject. During

21

the tick, the RTI may repeatedly call the Ambassador’s callback functions. Within
the callback functions, the Ambassador relates the object handle provided by the
RTI with the appropriate Umbra HlaObject, calls its standard callback method and
passes appropriate data. The Umbra HlaObject then, in turn, performs the
minimum computation needed to cache the data. Later, when the HlaObject
receives its Umbra Update, it processes the data for presentation to the other
modules.

Ambassador

4) Ambassador relates
object handle with

appropriate Umbra
HLA Object

: . :..

\ 5) Passes appropriate data

-3) RTI Callback with Data

needed to cache data
\ I

< 8) Processes data
I

Umbra HLA Object

Figure 14: How the Ambassador Coordinates the Receipt of HLA Subscription
Data

Interaction Management
Interactions are one-time events that are sent through the RTI. As with object
value updates, interactions are initiated or sent from proxy modules through the
Ambassador to the RTI. Similarly, the Ambassador receives interactions from the
RTI and dispatches them to proxy modules that have previously registered interest
or subscribed to the interactions.

Publishing is the three-step process shown in Figure 15. Prior to publishing an
interaction, the Ambassador must obtain interaction handle data from the RTI and
inform the RTI that it intends to publish each particular type of interaction. These
functions are initiated through the Tcl environment as calls to the Ambassador

module. Later, any proxy module can obtain interaction class and variable handles
and send the interaction via the Ambassador through the RTI. The Ambassador’s
getInteraction, getParameterNames, and sendhteraction methods are used here.

,

Tcl Environment

Ambassador

1) amb hialnteraction
I

interadion classes
Handles for

/
2) arnb pubiishinteraction

I 1

Note, the Tci Script must be
written to ensure that the

interaction is properly
published before it tries to

send interaction.

l I
\

3) sendlnteraction

m Umbra HiaObject

Figure 15: Publishing Interactions

Subscribing is also a three-step process and is shown in Figure 16. Prior to
subscribing to an interaction, the Ambassador must obtain interaction handle data
from the RTI and inform the RTI that it wishes to subscribe to each particular
type of interaction. (The first step is only performed once when the Ambassador
both subscribes and publishes.) These functions are initiated through the Tcl
environment as calls to the Ambassador module.

Later, individual proxy modules subscribe to the Umbra Ambassador for copies of
these interactions. These subscriptions can be generically subscribed through the
default Tcl subscribehteraction method (as shown in Figure 16) or through
internal code within specialized proxy modules. Tag data values can be used to
further constrain which interactions the Ambassador will later pass or dispatch to
each proxy module.

addSubscribelnteraction

3) hiaobj subscribeinteraction lciass

Umbra HlaObject

Figure 16: Subscribing to Interactions

Figure 17 shows how interactions are received and dispatched to proxy modules.
The RTI automatically calls the Ambassador's receivetnteraction callback when
any subscribed interaction is sent through it. (Special features within the RTI can
further constrain subclasses of interactions.) Within this callback, the Ambassador
dispatches the interaction to each proxy module that has subscribed to the
interaction class. (This function also uses tag data to restrict which objects process
the data.)

30

I RTi I
I1 i Ambassador

x Umbra HlaObject

Figure 17: Receiving Interactions

Suggested Reading
The following reports and books are recommended.

1. Buschmann, F Meunier, R; Rohnert, H; Sommerland, P, Pattern Oriented Software Architecture: A
System of Patterns, John Wiley & Son Ltd, 1996.

2. Gottlieb, El: Harrigan, RW McDonald, MJ; Oppel, FJ; Xavier, PG The Umbra Simulation Framework,
June 2001, Sandia Internal Report, SAND2001-1533.

3. Small, D E Gottlieb, W, Edlund, K Slutter, C; A Design Patterns Analysis of the Umbra Simulation
Framework, October 2w0, Sandia Internal Report, SANDZ000-2380.

4. Kuhl, F Weatherly, R Dahmann, I; Creating Computer Simulation Systems; An Introduction to the
High Level Architecture: Prentice Hall, 1999. ISBN 0-13-02251 1-8.

5. High Level Architecture Run Time Mrastructure Programmers Guide, Department of Defense,
Defense Modeling and Simulation Office. (htt!x//uww.dmso.mil).

32

DISTRIBUTION:
1 MS1002 J. Langheim, 15200
1 MS1004 R. Harrigan, 15221
1 MS1004 P. Bennett, 15221
1 MS1004 S. Gladwell, 15221
2 MS1004 M. McDonald, 15221
1 MS1004 E. Gottlieb, 15221
1 MS1004 F. Oppel, 15221
1 MS1004 R. Peters, 15221
1 MS1004 B. Rigdon, 15221
1 MS1004 D. Schoenwald, 15221
1 MS1004 J. Trinkle, 15221
1 MS1004 P. Xavier, 15221
10 MS1004 ISRC Library, 15221
1 MSlOlO M. Olson, 15222
1 MSlOlO D. Small, 15222
1 MSll25 K. Miller, 15252
1 MS1006 L. Shipers, 15272
1 MS1170 R. Skocypec, 15310
1 MS1188 C.Lippitt, 15311
1 MS1188 E.Parker, 15311
1 MS1188 J. Wagner, 15311
1 MS0830 C. Forsythe, 153 11
1 MS1188 S.Tucker, 15311
1 MS1188 R.G.Abbott, 15311
1 MS1176 D. Anderson, 15312
1 MS1176 R. Cranwell, 15312
1 MS1176 T. Calton, 15312
1 MS1176 D. Miller, 15312
1 MS0986 M. Platzbecker, 2664
1 MS0780 S. Jordan, 05838
1 MS1137 0. Bray, 06534
1 MS0318 M. Boslough, 9212
1 MS0188 C. Meyers, 01030
1 MS9018 Central Technical Files, 8945-1
2 MS0899 Technical Library, 9616
1 MS0612 Review &Approval Desk, 9612

For DOE/OSTI

	Abstract
	Introduction
	HLA Overview
	Umbra Overview
	Modeling Robotic Behavior in Umbra

	The Umbra HLA Library
	Umbra HLA Class Hierarchies
	Federation Creation & Destruction
	Time Management
	Non-regulating Unconstrained Umbra Federates
	Regulating and Constrained Umbra Federates
	Nonregulating Constrained Umbra Federates

	Object Management
	Relationship Between Umbra and HLA Objects
	Ambassador Factory Services
	Proxy Modules that Support HLA Interaction Classes
	Publication-based HLA Object Class Proxy Modules
	Subscription-based HLA Object Class Proxy Modules
	HLA Data Exchanges

	Interaction Management

	Suggested Reading

